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Along the lines of previous work, we give the general framework together with 
a detailed and rigorous study of the spectrum and Born-von Karman eigen- 
states of a 1D harmonic chain with controlled disorder determined by the 
Thue-Morse sequence. The spectrum is a Cantor-like set; we prove numerically 
that its measure is zero and calculate its Bouligand Minkowski dimension (box 
dimension). We prove that the value of the IDS-on each of the gaps is 
(2k + 1)/(3.2P), with k and p integers. Finally, we also prove that points in a 
dense subset of the spectrum give rise to extended states, an exceptional 
property due to the symmetry of the Thue-Morse substitution which can have 
important applications to multilayered structures, and we illustrate this 
situation. 

KEY WORDS: Controlled disorder; Thue-Morse sequence; spectrum; 
extended states; localization. 

1. I N T R O D U C T I O N  

The discovery of quasicrystals by Schechtman et al. ~1) has opened a large 

new field of interest for both  experimentalists  and  theoreticians. For  the 
theoreticians there has been, for one, a renewed interest in the role of 

geometry in the descript ion of quasicrystal  order, somewhat  along the lines 
of what  had been done in the case of amorphous  structures, using curved 

space models. ~2) Also, this discovery raised anew the quest ion of the 
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possible existence, stability, and properties of a kind of order intermediate 
between crystallographic order and random disorder. Around quasicrystals 
soared a number of models having quasiperiodic controlled disorder, for 
example, using Fibonacci-type sequences, for reasons which are well 
known. Indeed, the word quasiperiodic does refer to both the Fourier 
spectrum of the Fibonacci sequence, generated by the substitution a acting 
on the two-letter alphabet (0, 1), 

~ ( 0 )  = 1 

~(1)=10 

and the X-ray diffraction spectra found in certain quasicrystalline samples. 
Previous work (3'4) raised for the first time the question of the properties 

of a nonperiodic, nonquasiperiodic system having controlled--non- 
random--disorder described by sequences generated by substitutions or 
automata. (6~ Underlying our choice of the Thue-Morse sequence ~4'5) 

a(0) = 01 

a(1)= 10 

was also the question of the possible role of the sequence Fourier 
transform, which, in the case of the Thue-Morse sequence, is singular 
continuous, at variance with the Fibonacci situation. This question, which 
is of great interest to experimentalists studying X-ray spectra of multilayer 
superlattices, is not addressed here. (7-1~ 

We now give a careful wording--although perhaps scholarly--of work 
which has been presented by both authors in various invited seminars and 
conferences in Europe and the USA during 1987 and 1988. (4'5~ 

In Section 2 we establish the rigorous framework of our study. In 
Section 3 we demonstrate certain properties of the general "quasi-alloy" 
chain and of the Thue-Morse situation. The associated dynamical system 
is studied in Section 4, where we prove that the value of the IDS on the 
gaps is (2k+ 1)/(3.2P), k and p integers. 

In Section 5 we calculate the Bouligand-Minkowski dimension (box 
dimension) of the spectrum for various mass ratios, and numerically 
demonstrate that it has zero Lebesgue measure. In Section 6 we give 
examples of the extended states, whose existence is rigorously proven 
in Section 3, and explain the role of the symmetry of the Thue-Morse 
substitution in their generation. 

We now remind the reader that the study of our elastic chain trivially 
maps onto the study of (among others) the Schr6dinger, tight-binding, and 
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hopping conduction equations, whose properties have been investigated in 
controlled disorder situations, including the Thue-Morse sequence, by 
various authors. (H 14) 

2. F R A M E W O R K  OF THE S T U D Y  

2.1. Vibrat ions of Cyclic (or Born-von Karman)  Chains 

Let n be an integer larger than 1 and m a mapping from 77/nZ to 
J0, + oo [. Let us consider the differential system 

d2Xj 
m ( j ) - ~ 7 = X j + ,  + X j _ I - 2 X  j ( jeZ/nZ) (1) 

where the unknown is a function X defined on ~ and which assumes its 
values in 12(y_/n77). This equation describes the vibrations of the masses 
ml,..., m, linked by springs of identical strength which we can take equal 
to 1, forming a chain of length n. 

Let Yj= Xjm)/2. We then get the equivalent system 

d 2 y j  Yj+ l Yj + ]I; 1 
dt 2 (mjm~+l)l/2 2mj (mj_lm~) 1/2' ( jeZ/nZ) (2) 

Thus we are led to study the operator T on 12(~_/nZ) so defined 

Yj-1 2yj Yj+ 1 
(Ty) j=  (ms_lmj) 1/2 f- rnj (mimj+l) 1/2 

It is easily checked that T is a Hermitian operator. Moreover, it is positive 
because the scalar product 

Yj Yj + I 2 
(Ty, y ) = • m7 2 (mj+l)l/2 j ~ Z/n2V 

is positive. 
Any solution of the system (2) is therefore a linear combination of 

solutions of the form yei% where o f  (2 in our notation) is an eigenvalue 
of T, and y a corresponding eigenvector. 

Here is an equivalent formulation of the problem: to determine a non- 
negative number 2 such that there exists a nonzero vector in /2(7//nZ) 
satisfying 

--,~mjxj=xs+l--2xj+ xs_ l (j~Z/n~_) (3) 

822/57/5-6-4 
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which can be written in the following way (transfer matrix formalism): 

( x j + l ) = ( 2 - 1 2 m  j --1~( xj ~ (jeZ/nT/) 
Xj /I 0,/k, Xj_ 1, / 

(4) 

Let us denote by P,(2) the following product: 

(2-2mnl - ; ) ( 2 - 2 m n _ 1 1  - ~ ) . . . ( 2 - 2 m 2 1  -1)(2-2m,0j\ 1 - ; )  (5) 

Then, for Born-von Karman or cyclic boundary conditions, 2 is a 
solution to the problem if and only if 1 is an eigenvalue of Pn(2). Then 

is a corresponding eigenvector. But, as the determinant of P , (2)= 1, the 
condition on 2 can be written Tr P , (2)= 2 (where, as usual, Tr A stands 
for the trace of the matrix A). 

Moreover, for any fixed 2, the space of x's satisfying (3) has dimen- 
sion 2 at most. As a consequence, the eigenvalues of T have a multiplicity 
2 at most and 2 is a double eigenvalue if and only if Pn()~) = L 

2. Infinite Chains 

We are given the sequence (m(j))j~ ~ of masses linked as previously by 
springs of strength 1 and want to study the vibrations of this system. In 
other words, we want to study the spectrum of the following operator T on 
12(7/): 

(Tx) j -  Xj+ 1 .4_2xj xj ~ ( j~Y) (6) 
(m:m:+l) m -  mj (mjm:_,) '/2 

As previously, T is a positive Hermitian operator. 
The purpose of this paper is to determine the spectrum and modes of 

T when the sequence {mj} has the particular form of the Thue-Morse 
sequence. This will be done by approximating T by operators associated 
with cyclic chains as described above. 

2.3. An Approximation Property 

Let {ln}n~>l be an increasing sequence of integers larger than 2. For 
any n>~ 1 we are given two sequences {an,j}j~z and (bn, j)j~ ~ of real 
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numbers, both periodic with period l.. Besides, we suppose that there is a 
uniform bound M for these sequences: for any j and n, [a.j[ ~< M and 
Ib~,jl -%< M. 

Furthermore, we suppose that there exists an increasing sequence 
{t.},,>~ of nonnegative integers such that 1~-t~ tends to infinity and such 
that, for any je2~, both sequences {a<s+,.}.~> o and {b. j+,~ have 
limits, which we denote by a s and b j, respectively. 

Let us denote by T. and T the following operators of 12(Z/l.Z) and 
12(Z) respectively: 

(Tnx)j=an.jXl_ ~ +bn, jxj+an, j+lxj+ 1 (j~Z/I.Z) (7) 

(Tx)j--ajxj_~ +bfxj+as+~xs+~ (jeY_) (8) 

It is easily checked that these operators are Hermitian. Let us denote by An 
and A their respective spectra. We have the following result. 

L e m m a :  

A c ( ~  U A m  
n>~ l m ~ n  

ProoL Let Sn be the following operator from 12(Z) to 12(Z/I.Y_): 

(S.x)s=xs_t. for O<~j<l. 

Obviously, we have [IS.x[4 <~ [[xlF and l im._ co IlSnxl[ = [txtl. 
Let Jn be the operator from 12(Z/l~77) to 12(Z) so defined, 

0 if j < - t .  o r j ~ l . - t .  
(J.(x))j = if - t n  ~<j < - t .  + In (9) X j  + t~ 

Obviously, we have f[J.x[[ = f[xt[. A simple but tedious calculation shows 
that we have 

I[(T-J~T~&)xII 2 

~ < 6 M 2 (  2 
j ~ 2  tn 

+ Z 

Ixjl2 + ~ Ixjf 2 ) 
j>~l.-- t  --2 

f(aj-a.,j+t~ 
- - tn<j<ln  tn--1 

+ (bj-bn,j+t.) xj+ (aj+ 1 -an, j+l+t.)Xj+ll (10) 

Therefore the operators T-Jn T~S. and Id-J.Sn tend strongly to 0. 
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Let us now consider a number 2 outside the set 

('~ UAm 
n>~l rn>~n 

We have to show that 2 does not belong to A. There exists no > 0 and e > 0 
such that dist (2,~m>~,oAm))e. Therefore, for any n>~no, we have 

Let us first show that T - 2  is one-to-one. Let us consider xel2(Z) 
such that Tx-  2x = 0. As we have noted, II Z x -  2 x -  J~(T~- 2) S~xLI tends 
to zero as n tends to infinity. We thus have 

lim tlJ,(Z~-~)anxll=O, i.e., lim II(Zn-~da.xtl:O ( l l )  
n ~ o o  n ~ o o  

But IlSnxll ~ ~-1 II ( T -  2) S.xtl; therefore iIxLI = limllSnxll = 0. 
We can now complete the proof. Let y be an element of 12(Z). For 

each nonnegative integer n, let us set x (n)= Jn(T~- 2)-1 S~ y. If n >~ no, we 
have Ijx(~)ll ~< ~-1 Ilyll, Therefore, one can extract from the sequence {x (~)} 
a subsequence which converges weakly toward a vector x. It  results from 
the definition of x (') that, for - t n  < j  < l , -  t , -  1, one has 

a "( ' )  + ( b n j + , , - 2 )  (n) ,-(") = (12) n , j + t n ~ j  1 , X j  -~-an, j W l + t n ~ j + l  yj 

Taking the limit as n goes to infinity, we get ( T -  2) x = y. This shows that 
T - 2  is invertible and that I I ( T - 2 )  111 ~<e -1. Q E D  

3. T H E  " Q U A S I - A L L O Y "  C H A I N  P R O P E R T I E S  

3.1. S u b s t i t u t i o n s  

Let A be a finite set called an alphabet. A word constructed over A is 
a finite sequence x =  xl x 2 . - - x ,  of elements of A. The length n of the word 
x is also denoted by Ixl. The set of words over A is denoted A* (notice 
that, unlike the usual situation, the empty word is not considered, because 
it is not needed in the sequel). The concatenation of two words is the 
operation, denoted multiplicatively, consisting in putting these words end 
to end. Endowed with this operation, A* is a semigroup. 

A substitution over the alphabet A is a mapping ~r from A to A*. Such 
a mapping a defines an endomorphism of A*, still denoted by a, in the 
following way: 

~(xl ,  x2,..., xn) = ~(xl)  ~(x2)- .-~(x~) 

More complex substitution rules have been studied in (15) 
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A substitution is said to be irreducible if, for any a and b in A, there 
exists an integer n such that the word ana contains the letter b. In the 
sequel we will be dealing only with irreducible substitutions such that, for 
one letter a (and therefore for any letter) the length of ana goes to infinity 
with n. 

If x = xl x2--- xn is a word and if t is a nonnegative integer, v,x stands 
for the sequence {xi+t}l_,~<j~n_ t. 

A sequence x = {xj}j~ ~ E A z is said to be substitutive if there exists a 
substitution a over the alphabet A, a letter a in A, and two increasing 
sequences {t,}n~>0 and {P,},~>o of positive integers such that: 

1. l im.~ ~(laP"al - t .) = + ~ .  

2. For  a n y j 6 Z ,  (v, aP"a)j=xj as soon as n is large enough. In other 
words, the sequence x is the weak limit of vt, aP"a. 

3.2. De f in i t ion  of  the  " Q u a s i - a l l o y "  Chain  

We are given an alphabet A, a mapping m from A to the positive real 
numbers, and a substitutive sequence {~j}j~ z. At each si tej  in 7/is a mass 
m(ej); neighboring masses are linked by springs of constant strength 1. We 
study the spectrum and the corresponding eigenstates of the chain operator 
T so defined 

xj_ 1 2xj xj + 1 (13) 
(Tx)j= [m(ej_l)m(aj)] 1/2 + m(ej) [m(~j)m(ej+l)] 1/2. 

If we have e = l i m , .  ~ "ctaP"a, we shall denote by T, the operator on 
]2(7//[aP"a[ 7/) associated with the sequence 

{m( (aP"a)J) } , <~, ~ IoP"~J 

extended by periodicity (with period [aP~al) to the whole Z). 
Let us denote by A the spectrum of T and by An the spectrum of T,. 

We have already shown that we have 

A = ~  U Am 
n>~l m>~n 

We are going to show that, for the Thue-Morse  substitution defined below, 
we have 

A = O U A m  
n ~ O  m>~n 

Before doing that, we give some clues on the general case. 
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3.3. Renormal izat ion of  Traces: The General  Trace Mapping  

For each ~ E A and 2 ~ [R, let us denote by M(cq 2) the matrix 

( 2 -  2m(cQ 1 -10) 

and by Pn(2) the product 

Pn(2 ) = M( (ana)l,~.al , )4) M( (ana)t,~,,al_ 1, )~) 

• "'" M((a"a)2, ,I.) M((a"a)l ,  2) (14) 

As we have already explained, the elements of An are the roots of the equa- 
tion Tr Pp,()~)= 2, because of the Born-von Karman boundary conditions. 

Computing this trace in the general case is not an easy task: one has 
to iterate a polynomial mapping from the space ~4#A into itself. 
Nevertheless, in the case where the cardinality # A  of A is 2, it suffices to 
iterate a polynomial mapping from ~3 into ~3, as shown in ref. 16. Besides, 
in certain cases, including the one we are going to study, everything can be 
done in ~2. 

In view of an easier reading, let us recall the result of ref. 16. Let a be 
a substitution on the two-letter alphabet A = {0, 1 }, and M =  (Mo, M~) a 
couple of 2 x 2 matrices with determinant 1. Let JM denote the mapping 
from A* to the set of 2 • 2 matrices defined by the properties 

JM(O) = Mo, JM(1 ) = MI 

and, if wl and w2 are two words, 

JM(W1W2) = JM(W2) JM(Wl ) (15) 

When M 0 = M ( 0 , 2 )  and M I = M ( 1 , 2 )  one has JM(ana)=Pn(2). Let us 
also denote by a(M) the couple (JM(a(O)), JM(a(1)). Then, for any word 
w, we have 

JM(aW) = J~M(W) (16) 

In ref. 16 it is proved that there exists a polynomial mapping X from ~3 to 
~3 such that, for any M, we have 

(�89 Tr JM(a(0)), �89 Tr JM(~r(1 )), 1 Tr JM(a(01 ))) 

= X[�89 Tr JM(0), 1 Tr JM(1 ), �89 Tr JM(01 )] (17) 
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Therefore,  one has 

(�89 Tr  Ji(a"(O)); i Tr  JM(a"(1 )), �89 Tr  JM(a"(O1 ))) 

= g'(�89 Tr  JM(O), �89 Tr  JM(1), �89 Tr  JM(01)) (18) 

In other terms, 

Tr(JAa"(O)) 

= twice the first c o m p o n e n t  of 

n 1 )/ (~ Tr  JM(O), �89 Tr  JM(1), �89 Tr  JM(01)) (19) 

The trace m a p p i n g  found in the Fibonacci  case (17) is a par t icular  case of  
this theorem. 

3.4.  T h e  T h u e - M o r s e  Case  

This is the case, which we 
subst i tut ion (T defined as 

shall consider f rom now on, of the 

a(0)  = 0 1  
a(1)  = 10 (20) 

There exist two kinds of masses mo and m~ and we shall work  at fixed mass  
ratio ml/mo = p (with p < 1 wi thout  loss of generality). 

Let us show in this par t icular  case how one can determine the function 
g. Let us set 

Then,  

Therefore we have 

a = � 8 9  o, b = � 8 9  c = � 8 9  o (21) 

JM(a(O)) = M1Mo 

JM(a(1)) = MoM~ 

JM(a(O1 )) = M o M  ~ M 1Mo (22) 

1 Tr  JM(a(O)) = �89 Tr  JM(a(1 )) = C (23) 

2 2 But MoM~M1Mo has the same trace as M o M I ,  which is equal to 
(2aMo - I)(2bM~ - I), in virtue of the C a y l e y - H a m i l t o n  theorem. So 

�89 Tr  MoMI M1Mo = 4abc - 2a 2 -- 2b 2 + 1 (24) 
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It means exactly that z(a, b, c )=  (c, c, 4abc -2a  2 - 2 b 2 +  1). In this par- 
ticular case, to compute gn + 1 (n/> 1), one has in fact to iterate a function 
of two variables: 

~(x, y ) =  (y, 1 - 4x2(1 - y)) (25) 

Indeed, if we set (x, x, y) = ~(a, b, c), we have 

Z"+ l(a, b, c )=  (u, u, v) (26) 

where (u, v) = ~"(x, y)(n >~ 0). 
In fact, it will be more convenient to use, instead of ~, one of its 

conjugates: by changing variables (y changed into 1 -  y), ~ becomes the 
following function: 

qb(x, y ) =  (1 - y, 4xZy) (27) 

Therefore, if we set (x, x, 1 - y) = x(a, b, c), we have 

Z"+l(a, b, c )=  (u, u, 1 - v )  (28) 

where (u, v) = q~"(x, y). 
In the present case, 

M i =  (2-12mi - ; )  for i = 0 , 1  

Let us set 

a,(2) = 1 - )~mi/2 or ai(2) 

= � 8 9  for i = 0 , 1  

3(2) = �89 M1(2) Mo(2) 

= 2ao(2) a1(2) - 1 

q(2) = 1 - �89 Tr[Mo(2) M~(2) M~(2) Mo(2)] 

= 2[ao(2) + a1(2)] z - 8[ao(2) al()~)]  2 

Then, for any n >~ 0, we have the trace mapping 

�89 Tr P,  + 1(2) = first component of ~b"(~(2), q(2)) 

or, as already written in ref. 2, with xn = �89 Tr P,(2), 

x , + l = 4 x ,  x ~ _ l - 4 x ~ _ l  + l ( n > 2 )  

(29) 

(30a) 

(30b) 
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Let us now define a pa ramet r ized  curve g2: x = 4(2), y = ~/(2) (2 >~ 0). 
It is shown on Fig. 1 in the case p = ml/mo = 0.6. The pa rabo la  ~ which 
also appears  on this figure cor responds  to mo=ml or p = 1 and  has the 
equat ion  y=2(l-x2).  Let us set E , =  @ - ' ( x =  l )  (the inverse images, 
under  @", of the straight  line the equat ion  of which is x = 1). 

Then  A,+I is the set of pa ramete r s  cor responding  to the intersection 
points  of (~ and En. 

Let us now state the results. 15) 

Theorem.  In  the T h u e - M o r s e  case we have 

l. F o r n > ~ 2 ,  A n + l = A n .  

2. If 2 ~ U,>/3 A,\A2, then the ope ra to r  T has a dimension 2 vector  
space of extended states associated with 2. And if 2 ~ A 2 ,  there is one 
extended state. 

3. A=U,>~3 A. 

/ / i ~_ 

/ l 
~ (J=ol 

Fig. 1. The curve .Q in the (xy) plane as defined in the text for p = 0.6. The parabola ~ has 
equation y = 2(1 --x2). 
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Furthermore, when t n = 2  2n and p , = 2 n + 2  (see Section 3.1), 
Delyon (18) has proved that the corresponding operator T has no eigen- 
value, a situation also found in ref. 19. 

The proofs are organized as follows. Assertions 1 and 2 will be proved 
in the next paragraph. Then, assertion 3 follows from 2 and the lemma of 
Section 2.3. 

3.5. Study of A .  

We have E~=05 l(x~-~l)={y--~0} and E2=05-1(E~)={x=O}w 
{y=O}. 

Therefore, we have, for n ~> O, 

E,  +2 = 05 "(E2) = 05 -"(El)  w ~ - " ( x  = 0) = E,  +1 w 05 -n(x = 0) 

So the first assertion is proved. 
But, in fact, the equation of E 2 is  4xZy = 0, which means that when 

decomposing the algebraic manifold E2, the component E 1 is simple, while 
the component { x = 0 }  has multiplicity 2. By taking successive inverse 
images under 05, we get that any eigenvalue in A, \A  2 (the complement of 
A 2 in A,) has multiplicity 2. This therefore means that if 2~A, \A2,  we 
then have P,(2) = I (for n >t 3). 

Let us denote by Pn(2) the product of matrices obtained from the 
word G"I instead of an0 (this just means flipping O's and l's). In the terms 
of Section 3:3, 

= (31) 

As noted in that section, for n ~> 2, one has 

Yr P,(2) = Yr P,(2) (32a) 

[because )~(a, b, c)= (u, u, v) ]. Therefore, when 2 e A , \ A  2 we also have 
/3,(2) = L Also, it trivially follows from the definition of P,(2) that 

P.  + 1(2) = P.(2) P.(2) (32b) 

Let 2 be in A,,\A2 for one n > 2 .  The sequence {ej}j~z we are 
considering is built up out of the two blocks a"0 and a"l  which repeat 
according to a sequence of the same kind. We have just proved that the 
products of matrices P.(2) and P.(2), which are associated with an0 and 
a"l ,  are both equal to unity. So, if we consider any sequence {xj}j~ z 
satisfying the recursion relations, 

2m~jx i=2x j - x j+ l - x j  I ( J~ - )  (33) 
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it is built up out of two sequences of length 2" which repeat in the same 
way as the blocks a"0 and a"l  do. Therefore, such a sequence is bounded, 
so 2 is in the spectrum of T and the corresponding eigenstates are extended. 
This will be developed and illustrated below. 

Let us now suppose that 2 is in A 2. We then have 

Tr P2()o)= Tr P2(2)=  Tr PI()~) P~()o)= 2 (34) 

Any of these matrices has determinant 1, has 1 for a double eigenvalue, and 
is not diagonalizable. It is then easy to show that the matrices P2(2) and 
P2(2) share their eigendirection. So the above analysis applies, but this time 
there is only one, up to a multiplicative constant, bounded sequence 
satisfying (33). So, assertion 2 is proved. 

4. S T U D Y  OF THE D Y N A M I C A L  S Y S T E M  A S S O C I A T E D  W I T H  
THE TRACE M A P P I N G  

4.1. Reduct ion of the Domain 

Obviously, the x axis as well as both closed half-planes it delimits are 
invariant sets under r [recall that ~ ( x , y ) = ( X ,  Y ) = ( 1 - y ,  4x2y), 
Eq. (27)]. 

If we set X = 1 - y and Y = 4x2y, we get 

Y -  2(1 - X 2) = 2y[y - 2(1 - x2)] 

So the parabola ~ ,  the equation of which is y -- 2(1 - x2), is also invariant 
under q~ (see Fig. 1). Moreover, the closed set 

g = { ( x , y ) ~ 2 ; y ~ > 0  and y ~ > 2 ( 1 - x 2 ) }  (35) 

is also invariant under ~. It is represented in Fig. 2. 
The curve (2 lies outside ~.  Indeed, we have 

q1(2) 2 - 2[ 1 - r 2 ] = 2[ao(2 ) - a l ( , ~ )  ] 2 

[see formulas (29)], which is positive for mo :~ m~ and 2 ~ 0. 
Also note that the set {(x, y); y < 0 and x r 0} is invariant under qs; 

so it does not intersect the inverse image of { y = 1 } by q5 n for any n. 
It results from the above that the intersection of (2 and of ~b-n (x = 1 ) 

is contained in ~ for any n ~> 0. 
So, from now on, we shall consider the mapping �9 from 8 to E which 

~b defines by restriction. 
Set 

A, = (cos 7rt, 2 sin 2 ~t) (36) 
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2 
/ //I 

/, 

y 
/ 

i//,.-. ;;,J ;( 

/ %, 

9 

// 

,/r r /  / / / z "  X 

Fig. 2. The invariant closed set g as defined by Eq. (35). 

Fig. 3. 

l 
1 

\ 

1 

Definition of the parametrization of the parabola ~ by A, and the effect of 00 and 
01 (see text). 
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When t varies from 0 to 1, A t goes along the arc of parabola ~ which is 
part of the boundary of g (Fig. 3). Also note that the change of variables 
X =  1 - y and Y= 4xZy yields 

(X, Y) = ~ ( x ,  y)  = (cos 2rot, 2 sin 2 2~rt) 

~(At) = {A2t if 0~<t~< 1/2 
A2 2t if 1/2~<t~<l 

(37) 

of course, 

~"(cos zcr, 2 sin 2 ~zt) = (cos 2"zrt, 2 sin 2 2"~zt) 

4.2. Inversion of 

The following facts are easily checked: 

~(e) = (e ~ {x< 1})~ {(1, o)} 

~-~(1, o) = {y=O} 

Moreover, if (a, b) e g c~ {x < 1 }, then (a, b) has two inverse images by 
~>, (+_ 1/2[b/(1- a)]  1/2, l - a ) .  So the two branches of the inverse map of 

are so defined on #c~ {x<  1}: 

= ( ! ( •  1'2 ) 
tPo(a,b) \ 2 \ l - a J  ' l - a  

1 1/2 -- a )  (38a) 

On the parabola 2 ,  one has, with (a, b) = (cos 7~t, 2 sin 2 ~t), 

~t �9 2 7rt'~ 
0o(a, b )=  cos ~-, 2 sin ~-) 

01(a, b)-- - c o s  ~-, 2 sin 2 

; 

(38b) 
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Let us now summarize the properties of ~k 0 and ~1 

~(6';(a, b)) = (a, b) 

~to(a, b):# ~tl(a , b) 

~(x, y)= (a, b) 

means (x, y ) =  $o(a, b) 

Oo(~(x, y)) = (txl, y) 

Ol(~(x, y)) = (--Ixl, y) 

Oo(A,) = A,/2 

OI(A;)=AI_t/2 

for i = 0 ,  1 

if b ~ 0  

for ( a , b ) e { g n { a < l }  

or (x, y) = ~l(a, b) 
(39) 

These properties are shown in Fig. 3. 

4.3. The Polynomials Q. 

Let us define a sequence of polynomials in two variables by the 
recursion 

�9 Qo(x, y)= 1 - x  

Ql(x, y)= y 

Qj+2(x, y ) =  4 1 1 -  Qj(x, y)-]2 Q j+ l(x, y) for j/>O 

(40) 

It is easy to check that 

~ J ( x , y ) = ( 1 - Q j ( x , y ) , Q j + l ( X , y ) )  for j>~l  (41) 

By induction one can obtain 

d~ [-2 j + l +  ( - 1 ) s ] / 3  

dO Qj = [2 i + 2( - 1)s ]/3 

dyQj= [2 j -  ( -  1)J]/3 

(42) 

where d ~ dx ~, and dy ~ stand, respectively, for the total degree, the degree 
with respect to x, and the degree with respect to y. 
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]In the same way, if we define the polynomial Qj by the formula 
C)j(2) = Qj(ttl(2), ~10-)), we have 

d~ = 2 ]+ '  (43) 

Considering this polynomial is natural since we have 

1 Tr Pj+ 1(2) = 1 - Q j(2) (44) 

4 . 4 .  T h e  c u r v e s  C~1 ... . . .  . 

Let us denote by C, C', and C" the following half straight lines 
contained in d o (Fig. 4): 

C={(x,O);x>~l} 
C ' =  {(x, 0);x~< - 1 }  (45) 

C " =  {(0, y); y~>2} 

We have (recall that x = 1 corresponds to the Born-Von Karman situation) 

~-I(x-=I)={y=O}~8-=CuC' 
~ - I ( C )  = C u  C'  (46) 

~ - ' ( c ' )  = c "  

It follows then that we have 

~-2(x= 1)=CuC'uC" 
3(x= I)=CuC'uC"u~-I(C") (47) 

4(x= I)=CuC' uC" u~-I(c")~)-2(C") 

and so on. 
So we are led to study the sets C n = ~ - " ( C " ) .  Note that C, is 

contained in the algebraic manifold, the equation of which is Q n(x, y) = 1 
[by (41)-]. Let us define a sequence C~, ....... of subsets of N2, indexed by the 
finite sequences of 0's and l's, by the following recursion: 

Co = g,o(C") 

c 1 = 0 1 ( c " )  

c ~, ........ o = g, o( C ~, ....... ) 

C~, ......... 1 = 0 1 ( C ~ ,  ....... ) 

(48) 
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The sets Co and C1 are nothing but half straight lines, as shown on Fig. 4, 
which shows the results of three iterations of ~ 1. 

Co = {(x, 1); x >~ 1/x/~}, Cl= {(x, 1);x~< - 1 / x / 2  } (49) 

Figure 5 shows Coo, Col, Clo, and Cll (four iterations of (~-1), which 
are connected smooth curves, and their corresponding intersections with 
the parabola ~ .  In the same way, Fig. 6 shows Cooo, C001,..., Cl11, which 
are connected smooth curves also (five iterations of ~ 1). 

It results from the above construction that 

C - =  U C~1 ....... for n>~l 

It is easy to show by induction that none of the sets C, (for n>~l) 
intersects C". From this, it follows that C~1 ....... (for n~> 1 and e j=  _+1}, 
C, C', and C" are disjoint. 

As C" contains the point A1/2, the set Co contains A2-2 = All 4 and C1 
contains A1 2 ~ = A3/4. By recursion one can see that C,~,...,,, intersects the 
parabola ~ at a single point At, where t is a number of the form 
(2k + 1)/2 "+1 (k being an integer such that 0 ~< k < 2"). Conversely, to any 
such number t = (2k + 1)/2" +1 there corresponds a single sequence el,..., en 
such that C~1 ....... contains At. 

j C '  

0 

Cl 

Y 

, , /C" 

! 

C o 

,.,C 
It x 

Fig. 4. Results of the first three iterations of ~ - 1  on the x = 1 line together with the corre- 
sponding A r points on the parabola N. 
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C! 

C 

~AT/8 
/A! 

'Yl 
i /C1o 

! A!/8~ ~ Co0 AO\ 

C o 

Fig. 5. Same as Fig. 4, for four iterations of ~ - 1 .  

o 

001 000 

Fig. 6. Same as Fig. 4, for five iterations of ~ ~ (see text). 

822/57/5-6-5 
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We are now going to prove that each C~ ....... is a connected smooth 
curve. 

L e m m a .  Let 7 be a smooth curve in ~. 

1. If 7 has an infinite branch which is asymptotic to C1, then the 
corresponding infinite branches of ~0(7) and of ~ ( 7 )  are asymptotic to C". 

2. If 7 has an infinite branch asymptotic to C", then the correspond- 
ing branches of ~o(~) and ~1(7) are asymptotic, respectively, to Co and C1. 

3. If ~ has an infinite branch asymptotic to C', then the correspond- 
ing branches of ~0(~) and ~P1(7) are asymptotic to C". 

4. If 7 is contained in ~r~ { x <  1} and if l im,~ ,0 ~(t) -- (1, a), with 
a > 0 ,  then, as t~to, ~bo(7(t)) and @~(~(t)) have infinite branches 
asymptotic, respectively, to C and C'. 

Proof. These assertions result from the relations 4X2y=y and 
Y= 1 - x if ~(t) = (x, y) and (X, Y) = ~o(X, y) or (X, Y) = ~ ( x ,  y). 

It is then easy to prove by induction that any connected component 
7 of C~ ....... is a smooth curve and that two alternatives may occur: 

1. 7 begins at a point A(2k+~n-(~ and at its other end has an 
asymptote which is one out of the five half straight lines C, C', C", Co, 
and C1. 

2. 7 is homeomorphic to ~ and has two branches which are both 
asymptotic either to C or to C'. 

Indeed, if 7 is a component of C~ ....... , the components of ~o(~) and of 
~ ( 7 )  correspond to the connected components of ~ r ~ n  { x <  1}, the 
number of which is finite because 7 is algebraic. 

We are going to show that the second alternative cannot occur. Let Ha 
and Ks be the straight lines the equations of which are x = ~ and y = ~, 
respectively. 

In virtue of (42) and of the remark on ~ ,  the numbers of points of 
Ha c~ ~ ,  and of K~ c~ ~ ,  are at most [2 ~ - ( -  1)"]/3 and [2" + 2 ( -  1)"]/3, 
respectively. So the number of points of (H~ w H_~ w Ks) n ~ ,  is at most 
2 1 2 " - - ( - 1 ) " ] / 3 +  [ -2"+2( - -1 ) " ] / 3=2" .  

But if e>~ 1, (1) H~ intersects any component of C, which is 
asymptotic to C or Co, and (2) H_~ intersects any component of (~, which 
is asymptotic to C'  or C~. 

Moreover, /<2 intersects any component of C, which is asymptotic to 
C". Therefore, if ~t> 1, there are at least as many points in 
(H~u H_~wK2)c~ ~, as there are components of the first kind in C~, 
i.e., 2". 
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Now, if there existed a component of the second kind, it would 
intersect H~ or H_~ for ~ large enough, and this would contradict the 
above analysis on the number of intersection points. 

This analysis has a by-product which will be useful in the next 
paragraph: we know exactly the cardinalities of H a c~ C,, H ~  c~ CN,. and 
K2 ~ C,. In other terms, for n fixed: 

1. The number of curves C~ ....... asymptotic to C or Co is exactly 
[2 ~ __ ( -  1)n]/3. 

2. The number of curves C,, ....... asymptotic to C'  or C1 is exactly 
[2 n -  ( -  1)"]/3. 

3. The number of curves C~, ....... asymptotic to C" is exactly 
[ 2 "  + 2( - 1 ) " ] /3 .  

Moreover, since the curves C~ ....... are mutually disjoint, and if they 
are ordered by the natural order of their intersections with N, the 
[ 2 " - ( - 1 ) " ] / 3  first ones are asymptotic to C or Co, the [ 2 " - 2 ( - 1 ) " ] / 3  
following are asymptotic to C", and the others to C'  or C1. 

It follows from this analysis that any set C~,..:,~, is in fact a smooth, 
connected curve. 

4.5.  T h e  S e t  I" 

It is convenient to adopt a new notation for curves C~1 ....... . If k and 
n are nonnegative integers such that n ~> 1 and 0 ~ k < 2 n, F(2~ +1)2 c,+,~ will 
stand for the curve C~1 ........ which stems from the point A(2k+l)z-~, 1~. 
Besides, we set F 0 = C, F 1 = C', and F1/:2 = C". 

Let ~n be the set {k2-n; k e  N, 0 ~ < k < 2  "} and ~ the union of the ~, .  
We can now summarize the situation: to each t ~  is associated a 

single curve Ft, stemming from At. Moreover, the analysis at the end of the 
above paragraph shows that, for t e ~ :  

1. If 0 ~< t < 1/3, the curve Ft is asymptotic to either F o or/"1/4. 
2. If 1/3 < t < 2/3, the curve/" t  is asymptotic to F1/z. 

3. If 2/3 < t ~< 1, the curve F, is asymptotic to either F3/4 or F 1. 

Applying then 0o and 01 (that is, $ - 1  once) gives the following 
results: 

1. If 0 ~< t < 1/6, then F, is asymptotic to /"0- 

2. If 1/6 < t < 1/3, then F, is asymptotic to /"1/4. 

3. If 1/3 < t < 2/3, then F t is asymptotic to F1/=. 
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4. If 2/3 < ~ < 5/6, then F, is asymptotic to  F3/4, 
5. If 5/6 < t ~< 1, then F, is asymptotic to F1. 

We have 

U / ' t  : Fo  u F 1 ~ F1/2 to r  u " "  to r  1)(/-1/2) 
tE~n 

(50) 

and 

En+, c~~ U F, (51) 
tE~n 

Therefore A, + 2 is the set of parameters, along f2, of the intersection points 
of f2 and of the curves F, for t �9 ~ , .  But f2 meets any curve F, (with t e ~ )  
at two points at least and these intersections have to be counted twice 
(eigenvalues are double, except for t = 0 or t = 1). For A,+2 it yields at 
least 2E2(2"-1)+2-1 =2 "+2, which is exactly the expected number of 
eigenvalues of Tn + 2, counted with their multiplicity. This means that any 
curve F, meets f2 at exactly two points and that at the intersections these 
curves are transverse. 

We have 

l(1, O ) = ~ - l ( x =  l )= r o u  r l  

l(ro)= ro to (s2) 

- l ( C  1 ) --  El~ 2 

Therefore 

U G=r o) (53) 
t~n 

As the point (1, 0) is a fixed point for ~, the set U,~e Ft is invariant by 
and ~-~ ,  as well as its closure, which we will denote by F. 

The following proposition deals with the structure of F. 

P r o p o s i t i o n .  None of the curves F t ( t ~  @ )  is isolated. 

P r o o f .  Let us consider the planar set Sv, for v ~< 1, 

Sv= {(x, y); sup(0, 2(1-x2))<~y<~v} 

We have 

4'o(Sv)  c $1 _ I1 - ~/2~/~ 
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So, if we define a sequence {Dn}n~>2 by the recursion 

Vo= 1 
(54) 

v,+l=l--(1-vn/2) 1/2 for n~>2 

we have 

But the sequence v, converges to 0. So the curve F2 ~ converges to Fo in 
the Hausdorff metric sense. By symmetry, F~ is approached by the curves 
F1 2-,. Taking ~-~ ,  we see that Fu2 is approachable by curves F, on both 
sides. The result follows then by applying ~o and ~ repeatedly. 

4.6. The Curves r s 

Let us define P~/2 = {(x, 2), x ~ ~}. This straight line is tangent to the 
parabola N at Am. It is also the set of points (x, y) such that the first 
component of ~(x,  y) is - 1 .  Therefore we have 

The same analysis as before shows that ~ n(Fu2 ) consists in 2 n connected 
smooth curves, each of which is tangent to ~' at a point A ( 2 k + l )  2 i.+1~ 

(0~<k< 2 n) and has two asymptotes out of the five half straight lines 
C, C', C", Co, and C~. The curve tangent to N at point A(2k+~)2-,-, is 
denoted by ff(2k +1)2-.-1; it lies between Fk/zn and F(k +1)/2, because the sets 
q5 n - 1 ( x =  1) and ~b - " - l ( x  = - 1 )  are disjoint. The sets ~ - " ( x =  1) and 

- " (x  = - 1 )  are shown on Fig. 7. 
As before, because we are dealing with continuous curves, one can 

realize that the curve f2 intersects ~ "(x = - 1 ) (i.e., 0 0_< k < 2. f ' (zk  + 1)/2 n +i) 

at 2 ~+2 points at least. As the corresponding parameters (on g?) of these 
points are roots of the equation 0 , + 1 ( 2 ) = 2 ,  the degree of which is 2 n+2  

[see (41)], there are no more intersection points than the previous ones, 
and these intersections are transverse. 

4.7. Integrated Density of States and Gaps 

As An is an increasing sequence, the normalized counting measure/ t  n 
on A n tends to a measure/~ in the weak sense. This measure /~, the limit 
when n ~ oe of the density of states of finite chains, has A for a support. 
We are now going to describe it by giving an expression for its integral f,  
the integrated density of states. 
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N 

qs/,( 
Fig. 7. 

N 

The sets $ "(x= 1) and $~"(x= -1) for n=5 (see text). 

If t e N ,  let us denote by 2t and 2', ( 2 , < 2 ; )  the parameters (on s of 
the intersection points of s and Ft. Then f has the following properties: 

f ( 2 t ) = t / 2  for t e  

f ( 2~ )=  l - t / 2  for t e ~  

f i s  locally constant on the complement of A (gaps) 

(56) 

A way of proving the above formula is the following. Let t = k -2  m. 
For n ~>m, 2t is an eigenvalue of the chain of length 2 n+2 with BVK 
boundary conditions. The value at 2t of the integrated density of states of 
this chains is 2 (n+2) times the number of eigenvalues < 2 ,  
2 - ( n + 2 ) [ 1  + 2 ( k  .2 n - m -  1)] ,  which converges towards k .2  - m - 1  = t/2 
when n goes to infinity. The analysis for determining the value of the 
integrated density of states at 2~ is similar. 

It is not difficult to show by induction that the curves Cnl  ...1 are the 
graphs of convex and decreasing functions of x 2. As a consequence, the 
curves C1~ 1 with an odd number of l's as indices converge increasingly 
toward a curve F*  which is the graph of a convex and decreasing function 
of x 2. This curve F*  is asymptotic to C1 and meets the parabola N at the 
single point ( -  1/2, 3/2) = A2/3, which is a fixed point for ~ as well as for 
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Fig. 8. The spectrum of the Thue-Morse chain for a mass ratio p = 0.5. 

O.OZ 

0.60 

0.54 

0.52 

. . . .  I . . . .  r . . . .  

/ 
I 

/' 
i t 

/ 

/.- 

/ 
o5o  ~ ' ' , I ~ , , , I , , , , , , , , , , , , 

1.5 1 52 1 54 1 56 1.58 1.0 

Fig. 9. An excerpt of Fig. 8 showing the envelope curve at the edge of the center gap 
(2 = 1.5) to be identical with the envelope curve at 2 = 0. 
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01. In the same way the c u r v e s  f i l l . . .  1 with an even number of l's as 
indices converge decreasingly toward the curve 01(F*),  which is also the 
graph of a convex and decreasing function of x 2 and also meets ~ at A2/3. 
Note that ~12(F *) = F*  and that F*  w O~(F*) is an invariant manifold for 
~, which is tangent at ~ at the fixed point A2/3. 

The curve f2 intersects F*  at two points at least. In fact, it intersects 
it at exactly two points. If it were not so, then there would exist a curve 
Cll ... 1 with an odd number of l's as indices which would be intersected by 
(2 at three points at least, which is impossible. The same is true for the 
intersection of f2 and Ol(F*).  

Then if t~, t2, t3, and t3, and t4 are the parameters of the intersection 
points of f2 with F*  and Ol(F*)  (0 < tl < t2 < t3 < t4), the intervals It1, t2[ 
and It3, t4[ are gaps (they are contained in the complement of A and their 
extremities are in A). The value of the IDS is 1/3 on ] t l ,  t2[ and 2/3 on 
It  3, t4[ by the previous formula. 

The other edges of the gaps are obtained as the intersections of f2 and 
of the successive images of F*  by ~o and ~1- The value of the IDS on each 
of the gaps is then easily computed to be (2k + 1)/(3-2P), with p and k 
integers. This result can be obtained by different methods. (1~176 

Figure 8 shows the integrated density of states obtained by calculating 
about 5200 points of the spectrum A at a mass ratio of 0.5 (a calculation 
for the length 28 and p = 0.8 was given in ref. 4). Figures 9 and 10 are insets 
of the same. One clearly sees that (1) the envelope function is identical at 

Fig. 10. 
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Excerpts of Fig. 8 showing the fractal nature of the spectrum and the value of the 
IDS at the occurrences of the gaps. 
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both edges of each gap and at the origin (Figs. 8 and 9), and (2) Fig. 10 
is a "zoom" on a part of the spectrum which evidences its fractal 
character. (21) 

The values of the integrated density of states at the occurrences of gaps 
are indicated in Figs. 8 and 10. 

4.8. Changing Boundary Condit ions 

Instead of periodic boundary conditions as in Section 2.1, we could 
have considered antisymmetric boundary conditions. This means that we 
would like to determine 2 in such a way that there exists a nonzero 
sequence {xj} 1~j~2, such that 

X 1 ~ - - X 2 n  1 

xv  = -Xo (57) 

--2m~jxj=xj+l+Xj_l--2x j for 0 ~ < j < 2  n 

This means that Pn(2) has - 1  as an eigenvalue and that (Xo, x 1) is a 
corresponding eigenvector. Thus, the spectrum An of this chain is the set of 
roots of the equation 1/2 Tr P A 2 ) =  - 1 ,  i.e., A,+l  is the set of parameters 
of the intersection points of f2 and of ~ - ~ ( x = - 1 ) .  But we have 
studied this set in Section4.6; it is the reunion of the curves 
P(2k+l~/2,+~ (0~<k<2n) �9 We have shown that curves Fs and Fs are inter- 
leaved. From that it is easy to prove that the limit of the sets An, in the 
Hausdorff metric sense, is the same as that of An, i.e., A (one can 
nevertheless observe that the An are not nested). It also implies that the 
integrated density of states, for finite chains with antisymmetric boundary 
condition, has the same limit as previously. 

We have proved that all the chains associated ith the Thue-Morse 
substitution have the same integrated density of states. It is not clear 
whether they have the same spectral measure. 

5. LEBESGUE M E A S U R E  A N D  B O U L I G A N D - M I N K O W S K I  
D I M E N S I O N  OF THE P H O N O N  T H U E - M O R S E  S P E C T R U M  

Although we found a flaw in our proof, announced in ref. 5, that the 
phonon spectrum of the Thue-Morse chain is of zero Lebesgue measure, 
we are able to give a numerical proof of this statement by calculation of its 
Bouligand-Minkowski dimension (box dimension), which we find inferior 
to 1, for various values of the mass ratio; hence, the spectrum is of zero 
measure. 
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Fig. 11. Calculation of the Bouligand-Minkowski dimension dBM. Graph of log N~ versus 
log(l/e) for p =0.3 (see text). 

The Bouligand-Minkowski dimension is calculated by the "box 
method": let s be the diameter of "boxes" (in fact, intervals, here) covering 
the spectrum and N~ the minimum number of these "boxes" necessary to 
cover the spectrum A. Let us plot log N~ versus - l o g  e. The corresponding 
curve, shown in Fig. 11, exhibits three regimes: 

Table I. Bouligand-Minkowski 
D i m e n s i o n  d B M  (Box Dimension) of 

the Thue-Morse Phonon Spectrum for 
Various Values of the Mass ratio p~ 

p = m 1/mo dBM 

0. i 0.74 
0.2 0.74 
0.3 0.74 
0.4 0.77 
0.5 0.78 
0.6 0.79 
0.7 0.818 
0.8 0.84 
0.9 0.875 

The error on dBM is estimated to be less than 
_+ 0.025. 
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1. For large values of log(I/e), we find a horizontal part of the curve 
which corresponds to the effect of discretization; when e is too small, N~ 
just counts the number of points of the approximation, and does not say 
anything about the set itself. 

2. For small values of log(l/e) we see only the global size of the set. 

3. In the intermediate regime, which is the interesting one in view of 
the computation of the dimension, the curve is a straight line the slope of 
which is a good approximation to the dimension dBM. 

dBM = lim ( log U~ "] (58) 
\log(1/e)J 

N ~ e  d,M (59) 

Our results are described in Table I. We estimate the uncertainty in our 
calculations of dBM to be inferior to -t-0.025. We find the spectrum dimen- 
sion dBM inferior to 1 for the indicated mass ratios, which numerically 
proves that its Lebesgue measure is zero. 

6. T H E  E X T E N D E D  E I G E N S T A T E S  

In Section 3.5 we have proven that points in a dense subset of the 
spectrum give rise to extended states. Let us now give more details on this 
remarkable property, due to the original symmetry of the Thue-Morse 
substitution, by studying the example of the eigenstates corresponding to 
2 = 5.236068. 

First, we recall that, as we increase the chain length (n goes to n + 1 ), 
the spectrum An+~ contains the spectrum An (as shown in Section 3). The 
point of the spectrum 2 = 5.236 was "born" (appeared for the first time) at 
chain length 23 = 8, and it is a double eigenvalue of T3: then the conditions 
P3 (2= 5 .236 )= I  as well as P3 (2=5 .236 )= I  are realized. The two 
corresponding Born-von Karman eigenstates are the building blocks a 
and b of modes 12 and 13 of the chain of length 16 (Figs. 12a and 12b) 
corresponding to the Thue-Morse subsequence ab and ba for the very same 
point 2 = 5.236068, which is also a double engenvalue of T4, since 

P4(5.236) = P3(5.236) P3(5.236) (60) 

Figures 13a and 13b show eigenmodes 22 and 23 for chain length 32 = 2 s, 
corresponding to subsequences abba and baab, while Figs. 14a and 14b 
show eigenmodes 96 and 97 for chain length 128 = 2 7, and the same value 
of 4, corresponding to subsequences abbabaabbaababba, and the reverse, 
illustrating the building process. 
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Fig. 12. Normalized eigenstates 12 and 13 (in ascending order of eigenvalues) of a 
Thue-Morse chain of length 2 4 = 16 with p = 1/2 for 2 = 5.236068, corresponding to sub- 
sequences ab and ha. 
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Fig. 13. Same as Fig. 12, eigenstates 22 and 23 for the same point of the spectrum and 
a chain of 25= 32. The corresponding Thue-Morse subsequences are abba and baab of 

length 4. 
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Fig. 14. Same as Fig. 12, eigenstates 96 and 97 for the same point of the spectrum and a 
chain of 2 7~ 128. The corresponding Thue -Morse  subsequences are then abbabaabbaababba 
and baababbaabbabaab of length 16. 
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Indeed, extended states have been described by other authors, but 
in 3D superlattices, (22~25) where they arise from a local property of 
the building block, at special values of the wave vector in the plane 
perpendicular to the controlled disorder direction, not from the intrinsic 
property of the sequence. Such is the fundamental Thue-Morse symmetry, 
which governs the existence as well as the properties of the extended states 
found in this chain with controlled disorder, we believe, for the first time 
in this situation. Applications to multilayered systems are straightforward, 
and might be technologically quite interesting. 

NOTE A D D E D  IN P R O O F  

One of the referees brought our attention to a preprint by Kotani ~26~ 
on discrete Schr6dinger operators with random potentials assuming a finite 
number of values. He proved that, under suitable ergodicity hypotheses, 
the spectral measure of such an operator is singular with respect to the 
Lebesgue measure, with probability 1. 

Let us describe his result in our framework. Let X be the closed orbit 
of the Thue-Morse sequence under the shift operator S. It is known (27'28) 
that there exists on the compact X a unique Borel probability measure/~, 
invariant under S, and that the system (X, S,/~) is ergodic. Let qo and ql 
be two distinct real numbers and consider the Schr6dinger operator H: 

( H x ) n  = x n +  1 + x n _  1 + q ~ x ,  

where the sequence e--- {e~},~ z is in X. 
Then, according to Kotani, for #-almost every sequence e, the 

associated Schr6dinger operator has a singular spectral measure. 
On the other hand, our analysis, although described for harmonic 

chains, is valid for these Schr6dinger operators. We proved that the 
spectrum of such an operator does not depend on the choice of ~ in X. 
Moreover, we have given numerical evidence that this spectrum is of zero 
Lebesgue measure. 
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